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NATURAL CONVECTION COOLING TRANSIENTS 
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Abstract-An integral theory of natural convection transients, which has been successfully compared 
with experimental results, is used to study the transient temperature response of an element, having 
thermal capacity, whose energy input is abruptly terminated. An element thermal capacity parameter 
arises in the analysis whose value indicates the boundary between the regimes of true convection 
transients and essentially quasi-static processes. This value has been determined by calculations. 
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NOTATION 

Prandtl number dependent constant; 
generalizing factor for time: 
specific heat of fluid; 
thermal capacity of element per unit 
surface area; 
local gravitational acceleration; 
local surface coefficient; 
thermal conductivity; 
instantaneous energy generation rate 
per unit of element surface area; 
a velocity, proportional to that in 
steady state; 
instantaneous local velocity maximum; 
height of element; 
derivative of the generalized tempera- 
ture distribution; 
conventional Grasho’f number, based 
upon L and average temperature 
excess at beginning of transient, abso- 
lute value; 
modified Grashof number, based upon 
L and surface flux at beginning of 
transient, absolute value; 
Prandtl number; 
constant related to the element storage 
capacity, equation (8); 
Prandtl number dependent constant; 
temperature; 
generalized time variable, equation (7); 
Prandtl number dependent constant; 
Prandtl number dependent constant; 

= 4l4,z. 

Greek symbols 

a, thermal diffusivity of fluid; 

& coefficient of thermal expansion of 
fluid; 

6 
A; 

thickness of thermal boundary layer; 
= 6,/L. 

$2 local temperature excess (t - tr); 
8 m, instantaneous local temperature maxi- 

mum (or minimum); 

& fluid absolute viscosity; 

P? density of fluid; 
7. time; 

V, fluid kinematic viscosity; 

x, &2lrQJ; 
*3 4d4Tt, m ; 
Onl, tj, I’, and 2 are instantaneous average 

values over the height of the element. 

Subscripts 
=, at the beginning of the transient; 
e, exponential response; 
I’. in the remote fluid; 
S, quasi-static. 

INTRODUCTION 

IN A PREVIOUS paper [I] the writer presented a 
“double integral” method for transients in 
natural convection in a single phase fluid. This 
theory is applicable to surfaces parallel to the 
body force and includes the effect of thermal 
capacity in the element which has the convecting 
surface, although conduction internal to the 
element parallel to the surface is assumed 
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negligible. It is assumed that this thermal 
capacity element is subject to an energy input 
condition. The energy input may be variable 
in time and either positive, zero, or negative. 
However, the assumptions of the analysis suggest 
that the theory should not be applied indis- 
criminately for transients resulting from a 
rapid oscillation in the rate of energy input. 

The resulting differential equations have been 
solved for a step in energy input, in [l] for an 
element of zero element thermal capacity and 
in [2] for non-zero element thermal capacity. 
The calculations in [2] indicate that, from the 
point of view of element temperature response, 
there are three regimes for the convection 
process in the fluid. The regimes are: essentially 
one-dimensional conduction, a true convection 
transient, and essentially quasi-static. The cal- 
culations indicate the limits of these regimes in 
terms of two values of a thermal capacity 
parameter Q which arises in the analysis. The 
total range for a true convection transient is a 
variation of Q of only one order of magnitude. 

The responses calculated in [2] were compared 
in [3] with measured convection transients in 
air and in water for a wide range of conditions. 
The measured responses were within 5 per cent 
of the predictions of the theory and, in addition, 
substantiated the conclusions concerning regimes. 

Since the condition for a quasi-static response 
is not severe, even for a step in energy input, the 
limiting condition for quasi-static response for a 
linear increase in energy input rate was investi- 
gated. The calculated results are given in [4] as 
the limiting value of Q as a function of the time 
constant of the linear increase in energy input. 
We note that the step input in [2] is the limiting 
value of a zero time constant for the energy 
input variation. 

Other analyses of natural convection transients 
are summarized in [l] and [2]. TO date no exact 
treatments have appeared for realistic boundary 
conditions. 

The present communication applies the theory 
of [l] to a circumstance which is very common 
in technology, namely the natural convection 
cooling or heating of an object having thermal 
capacity and which is initially at a temperature 
different from its surroundings. It is assumed 
that at the beginning of the transient process a 

steady state natural convection process is present 
with an energy input rate of qz. There is no 
meaningful one-dimensional conduction regime 
for this case. The present consideration is an 
attempt to predict the conditions which separate 
essentially quasi-static responses from true 
convection transients. 

The general differential equations relate the 
instantaneous value of the temperature, thermal 
layer thickness, and induced velocity maximum 
variables (#, Y, and x) to generalized time T. 
The equations apply to vertical plates and to 
vertical cylinders under the conditions in which 
a laminar boundary analysis in Cartesian 
co-ordinates is permissible. The equations in 
terms of average values (4, Y, and z), averaged 
over the height of the element, are written as 

$-ad;@P)- Yf.J=O (1) 

s$Y - u” 9--&F)- WPj2 =o (2) 

(3) 

where the constants, S, U, W,t and a, depend 
only upon Prandtl number. The thermal flux 
quantities, q” and qz, are the instantaneous 
and asymptotic (or initial) values of the rate 
of energy input to the element per unit of surface 
area. The dependent variables 6, Y, and 2, the 
generalized time T, and the generalized thermal 
capacity variable Q are defined as follows: 

Q= so (b Gr*;PW5 

* Note that S - U - W = 0, from steady-state 
considerations. 
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where the Prandtl number dependent quantities 
MO and b are known from [2] and the other 
quantities are defined in the listing of notation. 
The modified Grashof number is 

SP 4” LA 
Gr* =--f& 

CALCULATIONS 

For the problem under consideration here 
‘I ” = 0 for 7 > 0 and equations (l), (2): and (3) 
may be reduced to: 

(10) 

at T=O: Il;=f=1 (11) 

M here the prime indicates differentiation with 
respect to T. We note also that 4’ = jj’ = Q-1 
at T = 0. 

The quasi-static solution & may be obtained 
most simply by neglecting the time rate of 
change of energy and momentum in the con- 
I-ection layer in equations (1) and (2), i.e. the 
time derivatives in those equations, The differ- 

ential equation and solution for the condition 
of (11) are: 

(12) 

(13) 

This result is independent of Prandtl number. 
The quasi-static decay of element temperature 
is shown in Fig. 1. Also shown is the exponential 
decay with the same initial slope, i.e. $, = e-CT/Q). 
The reason for the difference is that the quasi- 
static, as calculated here, takes into account 
the variation of the convection coefficient with 
time, note the 5/4 exponent of $s in equation (12). 
The simple exponential decay may be sufficiently 
close for some purposes. 

The full equations [(9) and (lo)] were numeric- 
ally integrated by a Runge-Kutta technique 
at a tolerance of 10-S for values of the constants 
which apply for the Prandtl number of air, 
Pr = O-72, i.e. a = 0.2; b = 40.25 x 10-4; 
S = 16.128; U = 9.242; W = 6.886. These 
values are based upon the steady-state forms 
of the temperature and velocity distributions [2]. 
Calculations were carried out for values of Q 
of 1.0, 0.1, and 0.01. An abstract of the results 
is tabulated below. The responses are plotted 
against T/Q on Fig. 2. The quasi-static response 
is also shown. 

FIG. I. The quasi-static and exponential responses. 
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FIG. 2. Convection transient responses compared with the quasi-static responses. 

Table I. Comsectiol? transient amiquasi-static .sohrtiom 

TiQ 

--- 

$forQ= 
-________ 
0.01 0.1 

0.01 
0.05 
0.10 
0.15 
0.2 
0.3 
0.4 
0.5 
0.6 
0.8 
1 ,o 
1.2 
1.4 
1.6 
1.8 
2.0 
2.5 
3.0 
3-5 
4.0 
4.5 
5.0 
6.0 
7.0 
8.0 

0.909 1 

0.8333 
0.7691 
0.7141 
0.6664 
0.6246 
0.5548 
0.4990 
0.4532 
0.4150 
0.3830 
0.3550 
0.3309 
0.2828 
0.2467 
0.2186 
0.1961 
0.1777 
0.1624 
0.1383 
0.1203 
0.1063 

0.990 I 
0.9524 
0.9090 
0.8694 
0.8329 
0.768 I 
0.7120 
0.6630 
0.6196 
05463 
0.4863 
0.4363 
0.3939 
0.3575 
0.3259 
0.2983 
0.2323 
0.2000 
0.1673 
0.1415 
0.1208 
0.1041 

1 .o 
-__ 

0.9901 
0.9523 
0.9083 
0.8673 
0.8287 
0.7578 
0.6943 
0.6373 

0.4267 
0.3675 

0.2426 

is 
equation 

(13) 

0.990 I 
0.9515 
0.9060 
0.863 1 
0.8227 
0.7488 
0.6830 
0.6243 
0.5718 
0.4823 
04096 
0.3501 
0.3011 
0.2603 
0.2262 
0.1975 
0.1434 
0.1066 
0.0809 
0.0625 
0.0490 
0.0390 
0~0256 
0.0174 
0.0123 

CONCLUSIONS 

Comparison of the transient responses with 
the quasi-static shows that the value of Q 
delimits the regimes of transient and quasi- 
static behavior. For Q = 1.0, $ -- I,& remains 

less than 0.02 over the whole range of T,‘Q. 
Therefore, one may say that all processes for 
which Q > 1.0 have an essentially quasi-static 
response. 

For smaller values of Q the difference is much 
greater, particularly if one is interested in the 
time necessary, for example, to cool an element 
to essentially ambient temperature. To obtain 
a value of $ of 0.1 for a circumstance having 
Q : 0.1, the time interval for the transient result 
is 65 per cent greater than that estimated by the 
quasi-static. For Q = 0.01, the time interval is 
170 per cent greater. This difference could be of 
great importance in, for example, electronic 
element or reactor element transients and in 
circumstances for which thermally induced 
stresses are an important aspect of design. 
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Resume-Une theorie integrale des transitoires par convection naturelle, que I’on a comparee avec 
suc& aux resultats experimentaux, est utilis& pour l’etude de la reponse transitoire de temperature 
d’un element, ayant une capacite thermique, dont l’alimentation en energie est arr%e brutalement. Un 
parametre de capacitt thermique de l’element apparait dam l’analyse; sa valeur indique la limite entre 
les regimes de vrais transitoires de convection et les processus essentiellement quasi-statiques. On a 

determine cette valeur par des calculs. 

Zusammenfassung-Eine Integralmethode der instationaren freien Konvektion, die erfolgreich mit 
Versuchsergebnissen verglichen wurde, dient dazu, die instationlre Temperaturandenmg eines Elements 
bestimmter Wlrmekapazitlt zu untersuchen, wenn die Energiezufuhr plijtzlich unterbrochen wird. Ein 
Parameter fiir die Wiirmekapazitlt des Elements erscheint in der Analyse; sein Wert gibt die Grenze an 
zwischen den Bereichen instationarer Konvektion und vorwiegend quasistationlrer Prozesse. Dieser Wert 

wurde berechnet. 

AmrOTaqA~-&rrr H3yYeHMR HWTaqllOHapHOrO PI3MeHeHEIFl TeMIIepaTypbl 3JIeMeHTa, EIMeIO- 

WerO TeIlJIOeMKOCTb, IIO,?(BOA TeITJIa K KOTOpOMy BHe3aIIHO I-lpeKpa~eH, trCllOJIb3yeTCH HHTer- 

paJIbHaR TeOpHH HeCTaqMOHapHOfl CB060fiH08 KOHBeKqHlI, JJaIoIQaR pe3yJIbTaThI, XOpOIIlO 

COBII~aIO~He C 3KCIIepHMeHTaJIbHbIMPI AaHHbIMH. haam noKa3bxBaeT Kanwfue napaMerpa 
rermoehrriocrn meMeHTa, 3Ka9eme ~0T0p0r0 yKa3bmaeT rpamqy MemAy pemanam Reil- 

CTBATeJIbHO EeCTaqHOHapHOti KOHBeKL(HI4 II KBa3H-CTaUHOHapHbIM. 3Ta BeJIElYHHa Barna 
BbIYIICJIeHa. 


